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Figure 1. Energy-dependent pulse profiles are plotted along with the best-fit theoretical model in 16 energy bands. The theoretical emission model predicts the total,
time-dependent X-ray flux observed in each energy band, fully including the general relativistic effects of gravitational redshift and light bending. We have accounted
for the XMM-Newton detector response by folding the theoretical model through the appropriate response matrix. Here we have subtracted the background counts and
normalized the pulse profiles to best show the energy dependence of the pulse amplitudes and phases. The reduced y? value for each energy band is indicated inside
each subplot. The model successfully reproduces the observed, energy-dependent pulse profiles, as well as the phase-averaged spectrum shown in Figure 4.

the small window mode with the thin filter. Our analysis made
use of version 16.22 of the HEASoft software, as well as
version xmmsas_20170719_1539-16.1.0 of the XMM-Newton
SAS software. Observations were reprocessed with the
epchain pipeline to apply the latest calibration products
and clock corrections. The SAS function barycen was used
to correct photon arrival times to the solar system barycenter
using the source coordinates in Gotthelf et al. (2013a). The data
sets were filtered to remove the time intervals contaminated
with particle flares according to the recommended criteria.
Standard flag and pattern filters (PATTERN<=4 &&
FLAG==0) were applied.

The source photons were extracted from a circular region
with a 30” radius, and the background spectrum was extracted
from an annular region with a 32”5 inner radius and 45” outer
radius. We verified that larger background regions give
consistent spectral results. The size of the source region was

chosen to maximize the Rayleigh statistic (Buccheri et al.
1983) in our timing analysis. X-ray pulsations were evident in
all observations, and Table 1 shows the Rayleigh Z statistic in
the 1.5-4.5 keV band for each observation. Pulse profiles from
each observation were aligned by fitting the pulses in the
1.5-4.5 keV band to a sine curve and then shifting the phase of
all photons so that the 1.5-4.5 keV band pulses are aligned.
The summed pulses in 16 energy bands are shown in Figure 1.

Gotthelf & Halpern (2009) found that the spectrum of the
CCO in Puppis A shows deviations from a pure two-blackbody
model. These deviations can be modeled either with the
addition of an absorption line at =0.45 keV or an emission line
at =0.75 keV. We performed a careful analysis to determine
the validity of these possible spectral features. The main
concerns were that a spectral feature could be an artifact of
imperfect background subtraction or the contamination of
X-rays from the Puppis A SNR. Contamination from the SNR
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Table 1
Log of XMM-Newton Observations

ObsID Date Live Time (ks) z?

0113020101 2001 04 15 15.8 49.3
0113020301 2001 11 08 16.1 51.7
0606280101-A 2009 12 17 29.3 79.6
0606280101-B 2009 12 17 26.6 284
0606280201 2010 04 05 253 101.6
0650220201 2010 05 02 13.6 237
0650220901 2010 10 15 16.4 46.2
0650221001 2010 10 15 16.3 60.7
0650221101 2010 10 19 18.6 425
0650221201 2010 10 25 17.2 70.2
0650221301 2010 11 12 16.5 25.7
0650221401 2010 12 20 19.0 58.2
0650221501 2011 04 12 21.0 68.2
0657600101 2011 05 18 25.6 92.3
0657600201 2011 11 08 26.1 51.1
0657600301 2012 04 10 24.7 96.8
0722640301 2013 10 29 319 118.2
0722640401 2013 10 31 29.0 86.2
0742040201 2014 10 18 321 106.0
0781870101 2016 11 08 50.2 146.9

Note. The z? statistic is calculated in the 1.5-4.5 keV energy band. The
observation beginning on 2009 December 17 was split into two separate files in
the XMM-Newton archive, labeled here as 060628010-A and 060628010-B.
We summed all data sets to produce a single combined spectrum and a set of
energy-dependent pulse profiles.

could occur due to the details of how the pn detector operates in
the small window mode. See Appendix A for a discussion of
the background characterization and subtraction method.

After concluding that the spectral feature is intrinsic to
RX J0822—4300, we chose to model it as an emission line
because it yielded a marginally better fit to the phase-averaged
spectrum. Also, the absorption line would be closer to the low
end of the XMM-Newton energy band, where the spectrum is
more absorbed by the ISM and suffers from greater calibration
uncertainties. An emission line may be an electron cyclotron
feature produced under optically thin conditions (Langer &
Rappaport 1982), possibly by low-level accretion from a
fallback disk (Gotthelf et al. 2005). Alternatively, if it is
actually an absorption line, it may be due to quantum
oscillations in the free—free opacity, similar to what is observed
in another CCO, 1E1207.4—5209 (Sanwal et al. 2002;
Suleimanov et al. 2010, 2012). In either case, because the
line-feature flux is relatively small, and its central energy is
well below the crossover energy of the warm and hot
components, it will not affect the results of our modeling.
See also Gotthelf et al. (2013a) for a thorough analysis of the
RX J0822—4300 spectrum and this line feature.

3. Emission Model

3.1. De ning the Viewing Geometry and Relative Positions of
the Two Emitting Regions

Our starting point is the emission model originally described
in Gotthelf et al. (2010). The observable X-ray emission from
RX J0822—4300 can be attributed entirely to two hot surface
regions; the remainder of the NS surface is cool enough that it
makes no detectable contribution to the X-ray spectrum
observed by XMM-Newton. In Figure 2 we show the geometry
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of the heated regions on the surface of RX J0822—4300. We
use a notation similar to that of Gotthelf et al. (2010), labeling
the angle between the rotation axis and the hot-spot pole &, and
the angle between the rotation axis and the observer’s line of
sight .

The flux amplitude from the heated regions on the surface of
the NS changes in time through the parameters ay(t) and ay,(t),
which are the time-dependent angles between the observer’s
line of sight and the “hot” spot and “warm” spot poles,
respectively. The phase 4, = 0 of the hot spot corresponds to
the closest approach of the hot spot to the observer, while the
phase of rotation is related to the angular rotation rate of the
star  through 4,(t) = t. With the spots fixed at colatitudes &,
and &, the angles ap(t) and a(t) will vary with the rotation of
the star as

h(t) cos?[coB cos, sin sin, cos(t)] Z4)1

and

w(t) cosicoB cos, sin sin, cog(t)] .Z) 2

We use spherical caps to model the hot spots on RX J0822
—4300. We label the angular radii of the hot spot and the warm
spot G and G, respectively. We also define two parameters, 6,
and 6., that specify how the warm-spot position deviates from
that of the hot spot, relative to a pure antipodal geometry, in
colatitude &, and longitude ~:

w 0w R Y ©)
w Hh H~I Q E4)

3.2. Intuitive Explanation of , , and Degeneracies in the
Emission Model

Adjusting the values of ¢, and ., the warm spot can be
placed anywhere on the NS relative to the hot spot. In the
special case of an antipodal geometry, .= 0 and ¢,= 0.
Figure 3 shows qualitatively how the energy-dependent pulse
amplitude and phase are affected by the parameters 6. and ¢.,.
In our coordinate system, the amplitude and phase of the X-ray
pulses from the hot spot are independent of both & and 6.,
Also, Equation (2) implies that 6, determines the phase of the
X-ray pulses from the warm spot, while &, affects only the
amplitude of the X-ray pulses from the warm spot. If the fluxes
from the two spots are comparable and ¢,= 0, then the
observed X-ray pulse phase as a function of energy will be a
step function. But, as we shall show, 6,70 is required to
match the observations.

As discussed in Gotthelf et al. (2010), for a perfectly
antipodal geometry, and with ¢ < 90°, there is a degeneracy in
the interchange of the viewing angles &, and . However, when
we generalize the model to allow for nonantipodal spots and
extend the range of v up to 180°, this degeneracy is broken,
and another degeneracy emerges involving the viewing angles
&, v, and the dipole offset angle 6. The following is an
intuitive explanation of this degeneracy: There is a curve in the
1, &, parameter space where the hot-spot pulse amplitude is
constant and equal to what is observed. At all points on this
curve, the position of the warm spot can be adjusted so that its
pulse amplitude matches what is observed. Both spot sizes vary
independently along this curve, so that the observed flux from
each spot is constant. The angle 4., does not participate in this
degeneracy because it only affects the relative phases of the
X-ray pulses and not the amplitude of the individual pulses.
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Figure 2. Mollweide projection of the coordinate system used to define the position of the warm spot relative to the hot spot. We define the “north rotational pole” to
be the rotational pole closest to the hot spot. The position of the hot spot also defines the line of 0° longitude (4, = O at time t = 0). The angle between the northern
rotation axis and the hot spot is the colatitude of the hot spot, &,. In a perfectly antipodal geometry, the warm spot would be at longitude y, = ~, + = and colatitude
&w = ™ — &, while the actual offset of the warm spot from the antipodal point is specified by ¢, and &, in Equations (3) and (4). Positive/ negative values of 6. move
the warm spot toward/ away from the south rotational pole. We emphasize that this coordinate system assigns colatitudes and longitudes to the positions of the hot
spots at a given time t. As the NS rotates, the two spots will move from left to right across lines of constant colatitude. Longitudes and colatitudes of the “hot” spot and

“warm” spot poles are indicated in parentheses.

3.3. Light Bending and Gravitational Redshift

We adopt a spherical coordinate system where the colatitude
angle 6 is measured with respect to the observer’s line of sight.
General relativity predicts that a photon traveling from a
colatitude 6 on the NS surface will reach an observer only if it
was emitted at an angle 6 measured from the surface normal.
The light bending angle 6 as a function of the emission angle ¢
is given by the following elliptic integral (Pechenick et al.
1983):

2
R) E"RS/szdu/\/l % ER @

2U) LPX?
0

©)

where x wsin Eand R/ R is the NS radius in units of the
Schwarzschild radius Rs= 2GM/ ¢?. To improve the efficiency
of this calculation, we use an approximation presented in
Beloborodov (2002):

Rs

1 cos (1 coB) 1E. (B

For a 1.4 M. NS, with any reasonable NS radius, the error
introduced by this approximation is 1%, smaller than the
statistical uncertainties in the data.

The observed spectrum as a function of rotational phase is
computed by integrating over the visible area of the hot spots
according to the formula given in Beloborodov (2002):

R ? ds

Here dF is the flux from a surface element dS, Iy(6) is the
intensity in the NS rest frame as a function of the emission
angle 6, and D is the distance to the NS.

3.4. Flux Integration

The observed pulse profiles of RX J0822—4300 are
consistent with a sinusoid, indicating that the intensity is
consistent with being isotropic (i.e., 1o(6) is actually indepen-
dent of 6). In this special case of isotropic intensity, the
integration of Equation (7) is a simple calculation of the
average value of cos Eon the NS hot spot (and the same for the
warm spot),

min( h By mad R

cos” 8 E cos
h By C
cos co€ cos
gcos ! h__——h : 9
sin  siB R

where Rax is the maximum NS colatitude visible to an
observer. Equation (6) implies that Rax 121 n7for a 12 km
radius, 1.4 Mg NS.

When calculating the two-dimensional integral of dF over
the visible area of a hot spot, there is a trade-off between
computational accuracy and speed. It is preferable to calculate
only the one-dimensional integral above, and use an exact
analytic formula for the visible hot-spot area, if such a formula
exists for the shape of the hot spot.

Here we calculate the visible surface areas of the spherical
caps that we use to model the hot spots on RX J0822—4300.
The area of a spherical cap with angular radius 5 on an NS with
radius Rys is 2 (1 co®)R3s, so this is theCvalue of [dS
when the entire cap is visible. When the spherical cap is only
partially visible, we use the exact analytic formula for the area
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Figure 3. We illustrate how the energy-dependent pulse amplitude and phase change with the model parameters ¢, and 6., (solid lines). The viewing angles &, and ¢
are fixed at 6° and 86°, which are the values Gotthelf et al. (2010) calculated for the perfectly antipodal model. The phase plot must be a step function if 6, = 0. The
smoother shift in phase of the data points demonstrates that the pulse profiles of RX J0822—4300 are inconsistent with an antipodal geometry. The 6, # 0° condition
also correctly predicts the nonzero pulse amplitude that we observe in all energy bands. Fitting only the amplitude and phase to the observed data is not sufficient for
accurate modeling, which requires fitting the exact pulse shape in each energy band as shown in Figure 1. The theoretical amplitude and phase curves calculated from

the best-fit parameters are shown in the lower panels of Figure 4.

of intersection 1(0, ry, ry) of two spherical caps with angular
radii r; and r,, separated by an angle 6 on a unit sphere (see
derivation in Appendix B):

[(,rur2) R Q
2cos ! cos R 1
sinry sinr,  tanrq tamr ,
cosr
2cos! — 2 cosr;
sin  sinrg tanR tanry
cosr 1
2cos! — 1 cosr,. (9
sin  sinr; tanR tanr,

So, the general formula for the visible area [dS of a spherical
cap with angular radius ( at colatitude « is

2 (1 COQ)RI\ZIS Cmax
S (0 Q, , mBREC R ma B-
0 B mag R

(10

In the following section we will fit our emission model to the
XMM-Newton data and constrain the viewing geometry of RX
J0822—4300. We will accurately measure the temperatures of
the two hot spots, calculate the minimum and maximum
possible values of the deviation from a perfectly antipodal
configuration, and calculate the corresponding values of the hot
and warm-spot sizes.

4. Energy-dependent Pulse-pro le Modeling

4.1. Accurately Measuring the Temperatures of the Two Hot
Spots

Our modeling procedure first constrains the two observed
spot temperatures and luminosities (KTwarm, KThots Lwarm» Lhot)
and then constrains the values of the geometric angles v, &, O,

and ¢,. As the NS rotates, an observer sees the hot and warm
spots moving through different colatitudes ((an(t) and a,(t) in
Equations (1) and (2)), and this produces the energy
dependence of the pulse amplitudes and phases, as illustrated in
Figure 3. So, the amplitudes and phases of energy-dependent
pulse profiles are strongly dependent on the temperatures of the
two hot spots. This is especially true around the 1.2 keV region
where the fluxes of both spots are approximately equal but
offset in phase, and therefore their pulses combine to produce a
Rminimum total pulse amplitude. The extreme sensitivity of the
pulse profiles to small changes in kTyarm and KTyq; implies that
this procedure will yield more accurate temperature measure-
nts than would result from spectral modeling alone.

We searched through fixed values of kTy.m, ranging from 0.18
to 0.28 keV, in steps of 0.001 keV, and allowed the rest of the
spectral model parameters (except the Gaussian line width fixed at

B Otine = 0.05 kg;V) to vary to fit the phase-averaged spectrum. So,
for each fixed value of KT,am, We have a candidate spectral

C model: ie., the valuBs of kT,& Lwarm: Lnots Eiines Liines Glines and
Ny that best fit the phase-averaged spectrum.

We fold each candidate spectral model through the XMM-
Newton detector response matrix and compute the phase-
averaged flux in each of the 16 energy bands. We then slightly
adjust the phase-averaged model flux in each energy band to
match what is observed, keeping the flux proportions from each
spectral model component unchanged, so as to not affect the
pulses produced by model. This is done to accurately extract
information about the temperatures from the pulse shapes,
avoiding biases due to small systematic errors in the detector
response. In all energy bands, the flux adjustment is smaller
than the 2% XMM-Newton pn detector systematic uncertain-
ties’ and may indicate residual calibration errors in the pn
detector response matrix file (RMF).

We next divide each energy band into 18 phase bins. For each
candidate spectral model, we will search for the amplitudes and

4 https:// xmmweb.esac.esa.int/ docs/ documents/ CAL-TN-0018.pdf
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Table 2

Observed Spectral Parameters of RX J0822—4300
Parameter Value
Nu 0.58 33 x 10% cm™2
KT warm 0.222 3318 keV
Lwarm 95 34 q 1022 Derg st
KThot 0.411 + 0.011 keV
Lot (1.01+ 0.01) x 10* D5 erg s+
Eine 0.74 + 0.01 keV
Oline 0.05 keV (fixed)
Liine 58 12x 103 erg s7*

Note. D3 is the distance to RX J0822—4300 in units of 1.3 kpc. The
temperatures of the two blackbodies and the central energy of the emission line
are the redshifted values. The blackbody luminosities are the unabsorbed
values. The interstellar absorption is modeled using TBABS with the
abundances from Wilms et al. (2000). One-sigma uncertainties are indicated
for each parameter. The uncertainties in the temperatures are calculated from
simultaneous spectral and pulse-profile fitting procedure described in Section
2.3. The uncertainties in the other spectral parameters are calculated using the
XSPEC error command.

phases of the individual spectral model components that best fit
the observed, energy-dependent pulse profiles. Gotthelf &
Halpern (2009) showed that the emission line at =0.75keV is
associated with the warm spot. Because an accurate measurement
of the line-pulse amplitude was not possible (the line is mostly
associated with the 0.7-0.8 keV energy bin, where both the hot
spot and warm spot also significantly contribute to the observed
flux), we set its pulse amplitude and phase equal to the pulse
amplitude and phase of the warm spot. We perform our search for
hot- and warm-spot amplitudes and phases (anot, awarm: T hots
f warm) Using simple sine waves to model the pulses in each energy
band. The last two paragraphs of this subsection explain why our
general relativistic emission model, defined in Section 3, produces
simple sine-wave pulses for the special case of the emission
geometry of RX J0822—4300. The amplitudes and phases are all
allowed to vary independently. For each candidate spectral model,
we record the best-fit y? value and the corresponding values (anor,
Qwarms f hot f Warm)-

After searching through all candidate model spectra, we find
that the hot- and warm-spot pulse amplitudes are ano= 16.9% +
0.8% and ayam = 20.0% £ 1.4%. The best-fit hot- and warm-spot
pulse phases are f wam —f hot= 7+ 6, with By 1117 28 We
identify the pair of temperatures (KTyam, KThot) that are best able
to reproduce the energy-dependent pulse profiles as the correct,
redshifted temperatures. We find that KTyarm  0.222 3318 kev
and kT = 0.411+ 0.011 keV. We emphasize that these are the
values of the redshifted temperatures that best fit both the pulse
profiles and the phase-averaged spectra, and are not the same as
the values obtained by only fitting the phase-averaged spectra.
The parameters of this phase-averaged spectral model are listed in
Table 2, and the phase-averaged spectrum is shown in Figure 4.

Our use of simple sine waves to model the pulses of the hot
and warm components is consistent with our general relativistic
emission model, defined in Section 3, and which we will use in
the following sections to translate these sine-wave parameters
into RX J0822—4300 emission geometry parameters (1, &p, O,
6,). If the intensity 1o(6) is isotropic and both hot spots are
always entirely visible to an observer, then Equations (1) and
(2) combined with Equations (6) and (7) imply that the pulses
from both spots are exactly simple sine waves. We will find
that the most probable emission geometries for RX J0822
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—4300 correspond to this most simple case, where both hot
spots are always entirely visible.

However, we also have to consider the case where a hot spot
is only partially visible to an observer during a rotation of the
NS. Then, the flux contributions from the hot-spot surface
elements dS that are always visible will still be simple sine
waves. The flux contributions from the hot-spot surface
elements dS that are not always visible will be “truncated”
sine waves. In the regions of the parameter space that produce
the observed low-amplitude X-ray pulses, these truncated sine-
wave contributions are a negligible fraction of the observed
flux because they correspond to surface elements dS where
cos E is smallest. It turns out that the fractional error from an
exact sine wave is very small, [CIOT“. So, even in these special
cases, the simple sine-wave pulse model is appropriate for our
purpose here of determining the values of (KTwarm, KThot: @nots

Awarms f hots f Warm)-

4.2. Computing the “ Beta Maps”

Having the correct hot-spot temperatures (as seen by an
observer at infinity), as well as the intrinsic pulsation
amplitudes and relative phase of the two spectral components,
we can then determine the corresponding possible values of the
viewing angles &, and 1) and also the position of the warm spot
relative to the hot spot parameterized by the angles 6. and é.,. In
Section 4.3, we will compute the time-dependent spectra from
our general relativistic emission model over the four-dimen-
sional parameter space of all plausible combinations of the
physical parameters &, v, &, and 6,. In order to compute these
spectra, it is necessary to know the values of the spot sizes Gy
and 3, for all of the possible values of &, v, &, and ¢,. Because
6, only affects the relative phases of the pulses from the hot and
warm spots, the sizes of both spots are independent of 6,. The
parameters (3,, and 3, are also functions of the mass, radius, and
distance to RX J0822—4300. We assume Mys= 1.4 Mg, Rns
=12 km, and D = 1.3kpc. While 3, and (3, do depend on
these parameters, it will turn out that the geometric angles we
are trying to measure are not very sensitive to the assumed
distance and NS radius.

For each combination of (&,, v, é), we calculated the values
of B, and Gy required to match the observed, phase-averaged
flux. Figure 5 shows some examples of these “beta maps,” i.e.,
maps of the sizes of the hot and warm spots as a function of the
viewing angles &, and . There is only one beta map for the hot
spot because its position relative to the observer only depends
on &, and 1. For the warm spot, we construct beta maps for all
values of the parameter é,.

4.3. Searching the Parameter Space

For each pair of the parameters (&, ¢) and (6, 6,), the “beta
maps” give the corresponding hot-spot sizes, and we can now
compute the values of the two pulsation amplitudes and the
relative phase from our emission model. Using this mapping
between the physical parameters of the NS geometry, and the
two pulsation amplitudes and the relative phase of the two
spectral components, we calculate the energy-dependent pulse
profiles corresponding to each set of physical parameters. We
then record the 2 values obtained from comparing each set of
theoretical energy-dependent pulse profiles to the data. The best
fit of the theoretical pulse profiles to the data yields a reduced

Iﬁo 1.01for v = 284 degrees of freedom. Figure 1 shows the
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Figure 4. Top panel: the phase-averaged spectrum of RX J0822—4300, plotted along with the best-fit model. The individual model components from the hot spot,
warm spot, and emission-line feature are shown. The temperatures are calculated to high precision by combining the spectral data with the additional constraints
required to match the energy-dependent pulse profiles. Table 2 lists the best-fit values of phase-averaged spectral model parameters and their uncertainties. Middle
panel: the observed pulse amplitudes are plotted along with the amplitudes predicted by our model. The observed fluxes of the hot and warm components are equal at
1.12 keV, and the pulse amplitude is minimized at a slightly higher energy: 1.17 keV. This is because the intrinsic amplitude of the warm component (20%) is larger
than the hot-component amplitude (17%). Bottom panel: the observed pulse phases are plotted along with the phases predicted by our model. The longitude of the
warm spot on the NS, -, differs from the hot-spot longitude ~, according to Equation (4): v = 7 + 7+ 6,. We find that 6, = 11°7, which accurately reproduces the

energy-dependent phases plotted in the lower panel.

theoretical model superposed on the energy-dependent pulse
profiles.

We derive constraints on &, +, and ¢, by calculating X2
above the best-fit value. Because ¢, only affects the relative
phases of the X-ray pulses from the warm and hot spots, its
value was already unambiguously measured in Section 4.1:
B 1117 3'8 Due to the added degeneracy of the offset
dipole emission model, the range of allowed values of &, and ¢
is substantially larger than in the perfectly antipodal model
considered by Gotthelf et al. (2010). In fact, for all hot-spot
positions 0°5 < &, < 89¢°5, there is exactly one viewing angle v
that gives the correct hot-spot pulsation amplitude. In turn, for
each of these values of 1), there is at least one value of 4, that
gives the correct warm-spot pulsation amplitude. While this is a
large range of model parameters that can reproduce the
observed X-ray data, in the next section we will show that all
but a wvery limited range of these parameters are very
improbable. Figure 6(a) shows the full range of allowed
combinations of &, and v, along with the 1o uncertainties in the
angle v. Figure 6(b) shows the values of the dipole offset angle

d¢ and its 1o uncertainties, parameterized by the hot-spot
inclination angle &,. Figure 7 shows the sizes of the hot and
warm spots as a function of the hot-spot colatitude &.

When &, > 42°4 (or equivalently when ¢ < 18?1), there are
two allowed values of ¢, for each (&,, ) pair. These two curves
are shown in Figure 6(b). In the upper curve, when &, > 42°4,
the center of the warm spot is always <3° from the south
rotational pole. In the lower curve, when &, > 42°4, the center
of the warm spot approaches the rotational equator as &,
approaches 90°.

We note here three special configurations of the two emitting
spots. We have labeled these special configurations in
Figure 6(a). First, there is a configuration where the two spots
have equal sizes. This corresponds to the angles (&, %,
0e) = (192, 115%9, —10°9). Second, there are two degenerate
configurations where é.= 0. These two configurations corre-
spond to the angles (&, ¥) = (5°5, 8729) and (&, ¥) = (87°9,
5?5). As expected, these two configurations intersect the 1o
confidence intervals of the perfectly antipodal solutions
calculated in Gotthelf et al. (2010). The first of these
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Figure 5. Sizes of the emitting regions as a function of all possible viewing angles, ¢» and &,, and the relative positions of the heated regions on the NS surface,
parameterized by the angles 6, and 6. In our coordinate system the hot-spot size is independent of ¢, and é,. The warm-spot size is a function of ¢, but is independent
of 6,. We show two representative plots of the warm-spot sizes. Left: the hot-spot angular radius as a function of the viewing angles 1 and &,. Center: warm-spot
angular radius with 8. = 0. Right: warm-spot angular radius with 6. = 10°. The spot sizes shown here are smaller than the corresponding sizes in Gotthelf et al. (2010)
because we are using the updated, closer distance estimate of 1.3 kpc (Reynoso et al. 2017).

configurations, (&, )= (5°5, 87°9), corresponds to the
minimum possible offset between the center of the warm spot
and antipodal point. This distance, antipodal, iS Measured along
the great circle connecting the center of the warm spot and the
antipodal point. At (&, )= (525, 87°9), we calculate that

antipodal = 171+ 0°2. If we consider the most probable
geometries (discussed in Sections 4.4 and 5.1) and calculate
the expectation value of this distance, we find that

antipodal = 9°35% 0°17. Figure 8 Shows  antipodal @S @
function of &, for the most probable values of &,.

4.4. ldentifying the Most Probable Geometries

While a range of values of &, and v are consistent with the
data, large regions of this parameter space are highly
improbable. First we consider v, the angle between the rotation
axis and the observer's line of sight, which should be a
sinusoidally distributed random variable. The reason is that this
is the distribution of angles one would get by sampling the
angles between two vectors pointing in random directions in
3D space. In this case the two vectors are the NS spin axis and
our line of sight to the NS. This means that there is a 99%
probability that 8911 < ¢)< 171°89 and a 95% probability that

18?19 < ¢ < 161°81. Figure 6 shows the <1% and <5%
probability regions of the parameter spaces shaded in gray. In
particular, there is a < 5% probability that the true geometry of
RX J0822—4300 corresponds to a point on one of the two ¢,
curves where &, > 4294,

As &, approaches 0°, ¢ approaches 180°, and the size of the
hot spot 3, increases rapidly for values of &,  1°. The reason
for this trend is that at these large values of 1), the hot spot is
mostly invisible to an observer, and the observer is seeing only
a small edge of the hot region. We consider these geometries
highly improbable because all of these scenarios involve “fine-
tuning” the size of the hot spot so that just enough of it is
visible to an observer to roughly match the flux of the warm
spot. See Section 5.1 for a discussion of this “fine-tuning”.

5. Discussion

The high resolution and statistics of the accumulated XMM-
Newton data on RX J0822—4300 have allowed us to map the
temperature profile of the surface of the NS in addition to
constraining its viewing geometry. They confirm the presence
of two approximately antipodal spots, as found by Gotthelf
et al. (2010), but also uncover the presence of an offset
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Figure 6. Constraints on the viewing geometry and dipole offset parameters of RX J0822—4300. These angles are conveniently parameterized by &, the angle
between the center of the hot spot and the rotation axis. The 1o uncertainties in the angles ) and ¢, are indicated by the red shaded regions, which are sometimes
smaller than the width of the line. Left: the values of 1, the angle between observer’s line of sight and the rotation axis, as a function of &,. The ranges of ¢ that can be
ruled out at 95% and 99% confidence are shaded gray. The points where the hot and warm spots are the same size, and where 6. = 0, are indicated. Right: the values of
the dipole offset angle &, parameterized by the angle &,. The ranges of &, that can be ruled out at 95% and 99% confidence are shaded gray. At values of &, > 4274,
there are two possible locations of the warm spot. In the upper curve, when &, > 4224, the center of the warm spot is always < 3° from the south rotational pole. In the
lower curve, when &, > 42°4, the center of the warm spot approaches the rotational equator as &, approaches 90°.

antipodal OF @t least 121+ 092 with respect to the (perfectly)
antipodal configuration identified in the previous, lower-
resolution study. We calculated the expectation value of this
offset  antipodar = 9735+ 0°17.

5.1. Further Constraints on the Most Probable Geometries

We can draw further conclusions that certain emission
geometries are very improbable if they require a “fine-tuning”
of the angle ¢ and the other model parameters. Naturally, there
should be no statistical correlation between the angle v at which
we are viewing RX J0822—4300 and its surface emission
geometry. For each degenerate solution, we can ask: “What is the
probability that a randomly selected angle ¢» would produce the
observed, similar hot- and warm-spot fluxes?” Referring to
Table 2, we see that the ratio of the observed luminosities is

Lhot 106 955, (13
warm

For some configurations of the hot and warm spots, there is a
larger range of values of ¢ that satisfy this condition that we
observe. This is because, in these geometries, the hot and warm
spots really do have similar intrinsic luminosities. Alterna-
tively, if the two spots really do have very different
luminosities, then we would only measure similar observed

fluxes if we are viewing RX J0822—4300 from a narrower
range of viewing angles .

For each degenerate solution, keeping all model parameters
except ¢ fixed, we calculate the minimum and maximum
values of ¢ that are consistent with Equation (11). The
probability Pconsg Of @ given configuration is then proportional
to the probability that a value of « in this range will be drawn
from a sinusoidal distribution:

Reonti T “ln @z (12

in

Here ¢ is drawn from a sinusoidal distribution because of the
same geometric argument described in Section 4.4. We find
that there is a 1% probability that {< 1° and a 1%
probability that &, > 35°. Finally, we find that the probability
distribution function for the value of the hot-spot colatitude
peaks at &, = 6°.

5.2. Insensitivity of Results to Values of the NS Radius, Mass,
and Distance

We have modeled RX J0822—4300 as a 1.4 Mg, 12 km radius
neutron star at a distance of 1.3kpc. Some results of our
modeling, like the values of 3,, and 5, do depend on Mys, Rus,
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